Reducing extrinsic performance-limiting factors in graphene grown by chemical vapor deposition.
نویسندگان
چکیده
Field-effect transistors fabricated on graphene grown by chemical vapor deposition (CVD) often exhibit large hysteresis accompanied by low mobility, high positive backgate voltage corresponding to the minimum conductivity point (V(min)), and high intrinsic carrier concentration (n(0)). In this report, we show that the mobility reported to date for CVD graphene devices on SiO(2) is limited by trapped water between the graphene and SiO(2) substrate, impurities introduced during the transfer process and adsorbates acquired from the ambient. We systematically study the origin of the scattering impurities and report on a process which achieves the highest mobility (μ) reported to date on large-area devices for CVD graphene on SiO(2): maximum mobility (μ(max)) of 7800 cm(2)/(V·s) measured at room temperature and 12,700 cm(2)/(V·s) at 77 K. These mobility values are close to those reported for exfoliated graphene on SiO(2) and can be obtained through the careful control of device fabrication steps including minimizing resist residue and non-aqueous transfer combined with annealing. It is also observed that CVD graphene is prone to adsorption of atmospheric species, and annealing at elevated temperature in vacuum helps remove these species.
منابع مشابه
Nanoscale tribology of graphene grown by chemical vapor deposition and transferred onto silicon oxide substrates
We present a comprehensive nanoscale tribological characterization of single-layer graphene grown by chemical vapor deposition (CVD) and transferred onto silicon oxide (SiO2) substrates. Specifically, the nanotribological properties of graphene samples are studied via atomic force microscopy (AFM) under ambient conditions using calibrated probes, by measuring the evolution of friction force wit...
متن کاملTransport in nanoribbon interconnects obtained from graphene grown by chemical vapor deposition.
We study graphene nanoribbon (GNR) interconnects obtained from graphene grown by chemical vapor deposition (CVD). We report low- and high-field electrical measurements over a wide temperature range, from 1.7 to 900 K. Room temperature mobilities range from 100 to 500 cm(2)·V(-1)·s(-1), comparable to GNRs from exfoliated graphene, suggesting that bulk defects or grain boundaries play little role...
متن کاملChemical vapor deposition-derived graphene with electrical performance of exfoliated graphene.
While chemical vapor deposition (CVD) promises a scalable method to produce large-area graphene, CVD-grown graphene has heretofore exhibited inferior electronic properties in comparison with exfoliated samples. Here we test the electrical transport properties of CVD-grown graphene in which two important sources of disorder, namely grain boundaries and processing-induced contamination, are subst...
متن کاملControl of Superhydrophilic and Superhydrophobic Graphene Interface
Superhydrophobic and superhydrophilic properties of chemically-modified graphene have been achieved in larger-area vertically aligned few-layer graphene nanosheets (FLGs), prepared on Si (111) substrate by microwave plasma chemical vapor deposition (MPCVD). Furthermore, in order to enhance wettability, silicon wafers with microstructures were fabricated, on which graphene nanosheets were grown ...
متن کاملBilayer Graphene Growth by Low Pressure Chemical Vapor Deposition
Successfully integrating graphene in standard processes for applications in electronics relies on the synthesis of high-quality films. In this work we study Low Pressure Chemical Vapor Deposition (LPCVD) growth of bilayer graphene on the outside surface of copper enclosures. The effect of several parameters on bilayer growth rate and domain size was investigated and high-coverage bilayers films...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS nano
دوره 6 4 شماره
صفحات -
تاریخ انتشار 2012